MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information معلومات المادة الدر اسية						
Module Title	Lo	gic circuits desig	n	Modu	le Delivery	
Module Type		Core			⊠Theory	
Module Code		LOCD113			□Lecture ⊠Lab	
ECTS Credits		7		⊠Tutorial ⊠Practical		
SWL (hr/sem)		175			Seminar	
Module Level	Module Level		1 Semester of		y	1
Administering Dep	partment	Type Dept. Code	College	Type College Code		
Module Leader	Mohammed Na	ajm	e-mail	mohamm	ed.n.abdullah@u	iotechnology.ed.iq
Module Leader's	Acad. Title	Assistant Prof.	Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Dr.Rand Ali		e-mail	Rand.A.Abo	dulHussain@uotec	hnology.edu.iq
Peer Reviewer Name		 Dr. Dhari Ali Lec. Noor Abdul Khaleq Asst.Lect. Enas A. Raheem 	e-mail 1. <u>Dhari.a.mahmood@uotechnology.e</u> 2. <u>enas.a.raheem@uotechnology.edu.</u>			
Scientific Committee Approval Date		11/06/2023	Version Number 1.0			

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Modu	le Aims, Learning Outcomes and Indicative Contents أهداف المادة الدر اسية ونتائج التعلم والمحتويات الإر شادية		
Module Objectives أهداف المادة الدر اسية	 To develop problem solving skills and understanding of logic circuit design methodology. To familiarize students with the core ideas of Boolean algebra and how it is used in digital logic circuits. The course deals with the basic concept of logic circuits. The course is the building block for Computer Architecture course. To understand how to design combinational logic circuits. To understand and apply optimization algorithms to design logic circuits. 		
Module Learning Outcomes مخرجات التعلم للمادة الدر اسية	 Differentiate between analog and digital quantities. Appreciate the power of using binary number system. Realize the importance of digital codes. Realize the importance of the abstraction provided by logic gates. Use Boolean algebra to analyze and simplify logic circuits. Use simulation of logic circuits. Use Karnaugh map to optimize the Boolean expressions. Grasp the concept of Don't care and understand why Quine–McCluskey method is more suitable than Karnaugh map for simplifying more than four variables Boolean equations. Apply systematic procedure to solve some of the digital design problems. Utilize Verilog to verify the logic circuit design. Understand universal gates properties and how to utilize these gates in the logic circuit implement arithmetic for computers. Understand how to reduce propagation delay. Utilize algorithmic thinking to simplify the design of a digital system. 		
Indicative Contents المحتويات الإر شادية	Indicative content includes the following: <u>Introduction to Digital Logic Design, Number Systems and Codes</u> Introduction to digital systems - Digital and analog quantities, binary digits, logic levels, digital waveforms, overview of basic logic functions, fixed-function integrated circuits, introduction to programmable logic, digital system application, positional number system, decimal numbers, binary numbers, number-base conversions, binary arithmetic, complements of numbers, signed binary numbers, arithmetic operation with signed binary numbers , hexadecimal numbers, octal numbers, binary codec decimal(BCD), digital codes. [6 hrs] <u>Logic Gates and Boolean Algebra</u>		

Review of AND, OR and NOT gates, NAND, NOR, EX-OR, EX-NOR, introduction to Hardware Description Languages (HDL), Boolean operation and expressions, laws and rules of Boolean algebra, De Morgan's Theorems, Boolean analysis of logic circuits, simplification using Boolean algebra, canonical and standard forms of Boolean expressions, Boolean expression and truth tables, developing Verilog model for logic circuits, gate delays, the Karnaugh Map, prime implicant and essential prime implicant, Karnaugh map minimization, don't care Conditions, Quine–McCluskey method. [10 hrs]
<u>Combinational Logic Analyses</u> Basic combinational logic circuits, design procedure, implementing combinational logic, Verilog models of combinational logic circuits, code conversion, the universal property of NAND and NOR gates, Combinational logic using NAND gates only and NOR gates only. [6 hrs]
<u>Combination Logic Circuit Applications</u> Half Adder, full Adder, half Subtractor, full Subtractor, parallel Binary adders and parallel Binary subtractors, 4-bit subtractor using 4-bit Adder, The Adder – Subtractor circuit, adder expansion, carry lookahead adder, decimal adder, parity generation and checking, magnitude comparator. [8 hrs]
and checking, magnitude comparator. [8 hrs]

	Learning and Teaching Strategies				
		استراتيجيات التعلم والتعليم			
 Lectures: the instructor will present in-class lectures to introduce and climportant concepts, theories, and principles related to the design of dlogic circuits. Interactive Discussions: Engaging students in interactive discussion encourage critical thinking. Hands-on Laboratory Work: students gain practical experience controlled environment to reinforce theoretical concepts. Group Projects: Assigning group projects that require students to collabor and work together to solve logic circuit design problems. This prom teamwork, communication, and division of tasks. Simulations and Virtual Labs: Utilizing simulation software and virtual laprovide students with virtual hands-on experiences when physical resourare limited. Use of Visuals and Multimedia: Incorporating visual aids, multimedia: 	Strategies	 These learning and teaching strategies aim to create an engaging and interactive learning environment. We summarize them below: Lectures: the instructor will present in-class lectures to introduce and clarify important concepts, theories, and principles related to the design of digital logic circuits. Interactive Discussions: Engaging students in interactive discussions to encourage critical thinking. Hands-on Laboratory Work: students gain practical experience in a controlled environment to reinforce theoretical concepts. Group Projects: Assigning group projects that require students to collaborate and work together to solve logic circuit design problems. This promotes teamwork, communication, and division of tasks. Simulations and Virtual Labs: Utilizing simulation software and virtual labs to provide students with virtual hands-on experiences when physical resources 			

7.	Assessment and Feedback : Regular assessments, including quizzes, tests, and examinations to show how well the students understand the subject.
8.	Practice and Revision Sessions : Providing dedicated practice sessions and revision classes enables them to improve students' comprehension and strengthen their information.

Student Workload (SWL) الحمل الدر اسي للطالب محسوب لـ ١٥ اسبو عا				
Structured SWL (h/sem) الحمل الدر اسي المنتظم للطالب خلال الفصل	93	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبو عيا	7	
Unstructured SWL (h/sem) الحمل الدر اسي غير المنتظم للطالب خلال الفصل	57	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبو عيا	6	
Total SWL (h/sem) الحمل الدر اسي الكلي للطالب خلال الفصل	150			

Module Evaluation تقييم المادة الدر اسية						
	Time/Number Weight (Marks) Week Due Relevant Learning Outcome					
	Quizzes	2	10% (10)	6 and 12	LO #1- #5 and #6 - #11	
Formative	Assignments	2	10% (10)	3 and 12	LO #2 and #5, #7, #11	
assessment	Projects / Lab.	1	10% (10)	Continuous	All	
	Report	1	10% (10)	14	LO #5 - #13	
Summative	Midterm Exam	2hr	10% (10)	8	LO #1 - #7	
assessment	Final Exam	3hr	50% (50)	16	All	
Total assessment		100% (100 Marks)				

	Delivery Plan (Weekly Syllabus)
	المنهاج الاسبوعي النظري
	Material Covered
Week 1	Introduction to digital and analog quantities, integrated circuits, and digital system applications
Week 2	Number-base conversions, binary arithmetic, octal and hexadecimal numbers, complements of numbers

Week 3	Signed numbers, arithmetic operation with signed binary numbers, BCD, digital codes
Week 4	Review of AND, OR and NOT gates, NAND, NOR, XOR, XNOR, introduction to Hardware HDL, Boolean
WEEK 4	operation and expressions, laws and rules of Boolean algebra, De Morgan's Theorems
Week 5	Boolean analysis of logic circuits, simplification using Boolean algebra, canonical and standard forms
WEER J	of Boolean expressions, Boolean expression, and truth tables
Week 6	developing Verilog model for logic circuits, gate delays
Week 7	Karnaugh Map, prime implicant and essential prime implicant, Karnaugh map minimization
Week 8	Midterm exam + don't care conditions, Quine–McCluskey method
Week 9	Basic combinational logic circuits, design procedure, implementing combinational logic
Week 10	Verilog models of combinational logic circuits, code conversion
Week 11	the universal property of NAND and NOR gates, Combinational logic using NAND gates only and NOR
WEEK II	gates only
Week 12	Half Adder, full Adder, half Subtractor, full Subtractor
Week 13	parallel Binary adders and parallel Binary subtractors, 4-bit subtractor using 4-bit Adder, The Adder –
WEEK 12	Subtractor circuit, adder expansion
Week 14	carry lookahead adder, decimal adder
Week 15	Odd and Even functions, Parity generation and checking, magnitude comparator
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)			
	المنهاج الأسبو عي للمختبر			
	Material Covered			
Week 1	Lab 1: Introduction to the lab kits.			
Week 2	Lab 2: NOT, AND, OR gates implementation using kit			
Week 3	Lab 3: NAND, NOR, EX-OR, EX-NOR gates			
Week 4	Lab 4: Rules of Boolean algebra (implementation using kit)			
Week 5	Lab 5: Universal gates and De Morgan's Theorems (implementation using kit)			
Week 6	Lab 6: SOP (implementation using kit)			
Week 7	Lab7: POS (implementation using kit)			
Week 8	Lab 8: Karnaugh Map (implementation using kit)			
Week 9	Lab 9: Karnaugh Map + don't care condition (implementation using kit)			

Week 10	Lab 10: Binary to Gray code, and Gray code to Binary (implementation using kit)
Week 11	Lab 11: BCD to Excess-3 Code Conversion (implementation using kit)
Week 12	Lab 12: Adders (implementation using Kit)
Week 13	Lab 13: Adders (implementation using Logisim)
Week 14	Lab 14: Subtractors (implementation using kit)
Week 15	Lab 15: Subtractors (implementation using Logisim)

Learning and Teaching Resources مصادر التعلم والتدريس					
	Text	Available in the Library?			
Required Texts	1-Digital Design with an Introduction to the Verilog, HDL,	NO			
	VHDL and System Verilog, Sixth edition, M. Morris Mano,	NO			
	Michael D. Ciletti, 2019.				
	2-Digital fundamentals, Eleventh Edition, Thomas L. Floyd,	NO			
	2015.	NO			
Recommended					
Texts					
Websites	https://www.coursera.org/learn/digital-systems				

Grading Scheme مخطط الدرجات						
Group	Grade	التقدير	Marks %	Definition		
Success Group (50 - 100)	A - Excellent	امتياز	90 - 100	Outstanding Performance		
	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
	C - Good	ختر	70 - 79	Sound work with notable errors		
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group (0 – 49)	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
	F – Fail	راسب	(0-44)	Considerable amount of work required		

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.